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Abstract
To describe accurately the electronic structures of carbon nanotubes, a semi-
empirical tight-binding approach is presented in which the main intrinsic
curvatures have been fully taken into account. The calculated electronic
structures and band gaps are consistent with experimental measurements.
Studies of the relative importance of various intrinsic curvatures show that
each curvature has a contribution of varying importance to the curvature-
induced band gap. Additionally, under both uniaxial and torsional strain,
semiconductor–metal–semiconductor phase transitions have been observed for
primary metallic carbon nanotubes. The critical stress of the transition and the
gap’s sensitivity with stress are dependent on both the diameter and chirality of
nanotubes, which is at variance with previous predictions.

While rolling a graphite sheet into a single-wall carbon nanotube (SWCN), the curvature leads
to hybridization of the graphitic σ - and π-states and modifies both the length and angle of bonds
between two nearest-neighbouring carbon atomic orbitals. Using both ab initio calculations
and a tight-binding sp3 approach, Blase et al [1] showed that only the σ–π hybridization effect
may dramatically change the band structures of SWCNs. Kleiner et al [2] studied analytically
the curvature hybridization. A curvature-induced gap of the order of 1/D2 was obtained in
primary metallic SWCNs with tube diameter D. The ultraviolet photoemission spectroscopy
He II spectral measurement [3] provided further evidence of the σ–π hybridization effect
in the SWCNs. Also, assuming that the transfer integrals γi are proportional to the cosine
of the misalignment angle, a scaling law of band gaps with D−2 dependence has also been
obtained using a single-π orbital model for these nanotubes [4–6], which fits well with the
experimental data [6–9]. Additionally, in terms of the Harrison formula [10], the bond-length
modified transfer integrals were re-calculated to study the response of the electronic properties
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to strain [11–13]. It is found that the electronic properties of SWCNs are sensitive to the
variations in bond length. These results show that each type of intrinsic curvature is responsible
for the curvature-induced band gap in a SWCN. How does a combination of these main intrinsic
curvatures affect the electronic properties of the nanotubes? Here, we present the details of a
sp3 tight-binding approach for including the main intrinsic curvatures. The curvature effects
and their relative importance have been explored. Additionally, the SWCNs that were studied
may be subject to various mechanical deformations in the process of both the preparation and
the measurement [14–18], which may alter the bond vectors and thus the hopping parameters.
Therefore, we also study the effect of strain on the electronic properties of SWCNs. Under both
uniaxial and torsional strain, semiconductor–metal–semiconductor (S–M–S) phase transitions
have been expected on primary metallic nanotubes.

We adopt the usual sp3 tight-binding model together with nearest-neighbouring
interactions to consider the σ–π hybridization of SWCNs. In terms of the rotational and
helical symmetry of a SWCN, we need only consider a two-carbon-atom (A- and B-type) unit
cell, defined by the dotted rhombus in figure 1(a). Eight Bloch orbitals, consisting of A and B
atoms, constitute the basis functions, given by [19, 20]

� j,α(r) = 1√
N

∑
R

eiK·Rϕα
j (r − R), (α = A and B) (1)

where K is the wavevector. The summation is taken over the coordinate R for the A and B
atoms, and ϕ j denotes the atomic wavefunction in state j ( j represents the 2s, 2px , 2py and
2pz orbitals). The eigenfunctions � j are then expressed as � j = ∑

j,α C j,α� j,α(r), where
C j,α are components of the eigenvector of the Hamiltonian matrix H . In the Slater–Koster
scheme [19], H is written as [20]

H =
(

HAA HAB

HBA HBB

)
, (2)

where HBA = (HAB)∗. Since atoms A and B are really alike, HAA and HBB are the same
4 × 4 diagonal submatrices, of which four diagonal elements are determined by the s- and
p-orbital energies of atoms. HAB is the interaction submatrix between atoms A and B. The
main problem in predicting the effects of curvature on the electronic properties of SWCNs
with curved surfaces has been determining accurately the matrix elements HAB

j j ′ (ri), defined
by [20],

HAB
j j ′ (ri ) =

∑
i

eiK·ri f (di)〈ϕA
j (RA)|H|ϕB

j ′ (RA + ri)〉, (3)

where ri = RB − RA and di = |ri |. Here, to consider simultaneously the variation in bond
length, the right-hand side of equation (3) is multiplied by a factor f (di), which is usually
given by the Harrison formula [10–13]. However, the d−2 dependence of the formula is invalid
both at much larger atomic separation d and at the limit d → 0, since the transfer integrals—
together with the atomic wavefunction—fall off exponentially at the former limit and tend to a
finite value of the on-site energy at the latter limit [10, 21]. In terms of the analytical formula
of the transfer integral for the He molecule [21], we may assume that

f (d) = (1 + λd)e−λ(d−d0)/(1 + λd0), (4)

where λ is a fitting parameter and d0 is the equilibrium lattice separation. Equation (4)
can describe the variations in transfer integrals under much larger and very small atomic
separation, such as in the case of high strain. It is found that, at λd0 = 2.732, f (d) has almost
the same behaviour as the Harrison formula near d0. Additionally, local density-functional
calculations [1] have shown that one π-orbital per carbon atom is orientated normal to the tube
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Figure 1. (a) An unrolled two-dimensional graphite sheet lattice. A two-carbon-atom unit cell is
shown in the dotted rhombus. (b) A schematic of the relative positions of two nearest-neighbouring
carbon atoms on the curved surface of a SWCNs along the ri direction. The dashed line OO′ runs
along the direction of the tube’s axis.

surface. Thus, a rotational angle αi exists between two neighbouring π orbitals along ri on
the surface of a SWCN [4, 6] (see figure 1(b)). The misalignment angle (half of the angle αi )
plays an important role in determining the curvature-induced gaps as a function of chirality and
curvature [4–6]. Usually, the effect of variations in rotational angle on the electronic properties
is neglected in a regular hybridization calculation. To take it into account, the wavefunctions
of |2pB

x 〉 and |2pB
y 〉 are decomposed into their σ and π components in the directions parallel or

perpendicular to the x-axis (see figure 1(b)), given by [20]

|2pB
x 〉 = cos αi |2pσ 〉 + sin αi |2pπ 〉,

|2pB
y 〉 = cos αi |2pπ〉 − sin αi |2pσ 〉. (5)

The overlap integrals in equation (3) referring to ϕB
x and ϕB

y are then derived from

〈ϕA
j |H |ϕB

x 〉 = cos αi E j x(ri ) + sin αi E j y(ri),

〈ϕA
j |H |ϕB

y 〉 = cos αi E j y(ri ) − sin αi E j x(ri),
(6)

where E j j ′ can be obtained directly from Slater–Koster tables [19, 23], which are dependent
on the direction cosines (li , mi , ni ) of the position vector ri . Other overlap integrals in
equation (3), independent of αi , have the same forms as those in the Slater–Koster tables [19].
This decomposition can be used to describe a bond in any general direction, which is useful
for fullerene-based structures with curved surfaces [20]. When evaluating the interactions
between the A and B sublattice, only the three nearest-neighbouring terms in equation (3) are
nonvanishing, since there are three B neighbours for an A site. Unlike in hexagonal graphite,
the three σ -bonds are not in the same plane but are instead directed towards the positions of
the nearest-neighbouring carbon atoms with the direction cosines (li , mi , ni ), so the sum in
equation (3) is usually nonzero. As a result, the states of the A and B sites in the curved surface
indeed mix, due to the curvature, which leads to the rehybridization of σ - and π-states under
our consideration. Once the matrix elements for the Bloch orbitals between the A and B atoms
are given, the band structures can be obtained by solving the secular equation det[H − E] = 0
with eigen-energy E . The calculated band structures have then incorporated the main intrinsic
curvatures in the curved surface of SWCNs.

We have used our model to calculate the band structures and band gaps of various types of
SWCNs. The on-site energies and overlap integrals were taken from previous works [22, 23]
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and were adjusted to fit the first-principle electronic structure results and the experimentally
measured band gaps for fullerence tubes [6–9]. We used Es = −7.3 and Ep = 0.0 eV
for the on-site energies and Vssσ = −4.30 eV, Vspσ = 4.98 eV, Vppσ = 5.86 eV and
Vppπ = −2.67 eV for the nearest-neighbour interactions. Figure 2 depicts the calculated
band gaps for different types of zigzag-type tube and armchair-type tube. For a comparison,
the experimental data measured by three groups [6–8] are also included. Good agreement
between theory and experiment is seen from figure 2(a). To explore the relative importance
of various intrinsic curvatures, the dependence of band gaps on bond length, bond angle and
regular hybridization is studied by varying each independently of the others. The regular σ–π

hybridization calculation can be performed by assuming f (di) = 1 and αi = 0 in equations (3)
and (6). Based on the single-π orbital model [4, 5],on the other hand,a straightforward analysis
of the dependence of band gaps on variations in bond length can be obtained from equation (4)
in terms of γi = γ0 f (di), where γ0 = |Vppπ |. Also, the bond-angle dependence of band gaps
may be discussed, provided that the single-parameter γi in the tight-binding approximation
is defined to be γi = cos αi Eyy − sin αi Exy , where f (di) = 1. As an example, the band
gaps of primary metallic zigzag-type tubes are presented in figure 2(b). In all of the three
cases, by only considering one type of curvatures one may observe the curvature-induced band
gaps. It shows that each of the three main intrinsic curvatures has a contribution of varying
importance to the band gaps, especially for a small-diameter nanotube. Next, the band gaps
are under-estimated in all these cases, compared with the theoretical and experimental results.
Therefore, a combination of the main intrinsic curvatures should be fully taken into account to
discuss the underlying physics in fullerene-based structures with curved surfaces. Although
one may additionally adjust the interacting parameters to fit the experimental data in the three
cases, this may lead to a significant variation in the transfer integral γ0. This result may help
to explain the large deviations in γ0 that were determined from different experiments, ranging
from 2.45 to 3.20 eV [5–8, 11, 24].

We now explore the effect of strain on the electronic properties of SWCNs. In the
framework of elasticity theory, the deformation can be written as [5, 11, 13] r′

i = (I + ε)ri ,
where I is the unit matrix, r′

i is the position vector of atom i after stress, and ε is given by

ε =
(

εc ξ

0 εt

)
, (7)

where ξ = tan(γ ) and γ is the shear strain. εc = s12σ and εt = s11σ are uniaxial strains
along the circumferential and tube axial directions under both uniaxial traction (σ > 0) and
compression (σ < 0), respectively [11].

The position of atoms after stress is determined by using the chirality-dependent coordinate
system [12]. The graphite values s11 = 0.98 × 10−12 P−1

a , s12 = −0.16 × 10−12 P−1
a [11] are

used in our work. We still focus on the primary metallic tubes. The band gap and the band
structure near the Fermi energy can be obtained by finding the minimum of the lowest-lying
conduction band and the maximum of the highest-lying valence band [4].

Under a uniaxial stresses with ξ = 0, the results are given in figure 3. The band gaps at
zero stress can be fitted well to the experimental data [6]. This may ensure the reliability of the
comparison between theory and experiment. From figure 3, S–M–S transitions are observed
for primary metallic non-armchair nanotubes, while the application of uniaxial strain does not
cause a band gap for an armchair tube, which is consistent with previous works [11–13]. The
critical stress σc of the transition corresponds to a truncation (0 < σc < 20 GPa) other than
a compression (σ < 0; see [11]), which is less than an average breaking strength (30 GPa;
see [14]). Thus, the transitions are observable experimentally. Using a more detailed analysis,
it is found that the gap sensitivity with stress dEg/dσ shows a small difference between the
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Figure 2. (a) The theoretically calculated and experimentally measured band gaps of zigzag-type
and armchair-type tubes. (b) The relative importance of the three main intrinsic curvatures on the
induced band gaps of the primary metallic zigzag-type tubes.

values before and after the transition, and the values of σc depend on both the diameter and
the chirality of the nanotubes. For example, the value of |dEg/dσ | for the (9, 0) tube is
9.81 meV GPa−1 at σ < σc ≈ 10 GPa, but 8.52 meV GPa−1 at σ > σc. This is at variance
with previous predictions [11–13].

When considering the changes in bond lengths by using the Harrison formula, we also
calculate the band gaps of the (9, 0) tube (see the dotted line in figure 3). As expected, the
difference in band gaps is almost unobservable between the two cases of the Harrison formula
and equation (4). However, an observable change appears under high strain. The band gap
and its sensitivity with stress decrease at σ > σc but increase at σ < σc. This shows that the
Harrison formula should be amended to obtain the band structure accurately at much larger d
and at the limit d → 0. Perhaps this indicates that the present model and the method may be
more useful for the tight-binding computation of the scanning tunnelling microscopy (STM)
image [22], where the separation between the sample and the tip of the STM is much larger
than the lattice constant.

In the case of a small torsional strain with σ = 0, S–M–S transitions are also found
in armchair-type and chiral tubes, as shown in figure 4. It further shows that a twist
deformation is the only possible source for a band gap in an armchair-type tube [5, 12, 13].
It is due to the curvature-induced band gap at zero strain that the ‘V’-shaped curve for
a chiral tube is shifted away from the origin. For a zigzag-type tube with small tube
diameter, the band gap decreases as the shear strain increases, but no transition appears.
As the tube diameter increases, interestingly a symmetrical ‘W’-shaped curve emerges for
the band gap as a function of torsional strain (see figure 4). Thus the S–M–S transition
can be observed at both positive and negative critical torsional strain. This may be
related to the high symmetry of a zigzag-type tube. Therefore, primary metallic zigzag-
type tubes are very sensitive to torsional strain. The result is different from the previous
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Figure 3. Band gap versus uniaxial strain for various types of primary metallic nanotubes. The
dotted line corresponds to the band gap of a (9, 0) tube with the bond-length changes according to
the Harrison formula.
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Figure 4. Band gap versus torsional strain for various types of primary metallic nanotubes.

works [11–13]. In terms of the deformation-tuned properties of nanotubes, therefore, one can
manipulate the electronic properties of SWCNs at will by developing the art of nano-mechanic
technology [14]. This may provide an alternative way to explore the intrinsic electronic
properties of SWCNs.



Letter to the Editor L445

This work is supported by the National Natural Science Foundation of China under Grant
Nos 10074052 and 10005007, the National 973 Project of China under Grant No 1999-
0645-4500, the Mid-youth Science-technology Foundation of Hunan Province under Grant
No 00JZY2138, and the Provincial Natural Science Foundation of Hunan, China under Grant
No 01JJY2002.

References

[1] Blase X et al 1994 Phys. Rev. Lett. 72 1878
[2] Kleiner A et al 2001 Phys. Rev. B 64 113–402
[3] Chen P et al 1999 Phys. Rev. Lett. 82 2548
[4] Ding J W, Yan X H and Cao J X 2002 Phys. Rev. B 66 073401
[5] Kleiner A et al 2001 Phys. Rev. B 63 073408
[6] Ouyang M et al 2001 Science 292 702
[7] Odom T W et al 1998 Nature 391 62
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